

Investigation of structural and magnetic properties of rare earth doped Co-Ferrite nanoparticles using X ray powder diffraction, Mossbauer effect spectroscopy and neutron diffraction measurements.

> Mohammed Yehia Elbahrawy Professor – Nuclear Solid State Physics Egyptian Atomic Energy Authority

Investigation of structural and magnetic properties of rare earth doped Co-Ferrite nanoparticles using X ray powder diffraction, Mossbauer effect spectroscopy and neutron diffraction measurements.

<u>M. Yehia</u> A. Hashhash M. Kaiser

I. Bobrikov

Institute of Physics and Technology, Mongolian Academy of Sciences

E. Uyanga

Magnetic moments originate from unpaired electrons which causes orbital and spin moment.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
H (-2,5)		all	value	s giv	en fo	r a te	mper	ature	of 3	00 K							He (-1,1)
Li 24	Be -23	B C N O F Ne -19 -22 (-6,3) 7,9 (-4,0)															
Na 8.1	Mg 5,7											A1 21	Si -3,4	Р -23	S -12	C1 (-22)	Ar (-11)
К 5,7	Ca 21	Sc 264	Ti 181	V 383	Cr 267	Mn 828	Fe 2.16	Co 1.76	Ni 0,61	Cu -9,7	Zn -12	Ga -23	Ge -7,3	As -5,4	Se -18	Br -16	Kr (-16)
Rb 4,4	Sr 36	Y 122	Zr 109	Nb 236	Mo 119	Tc 373	Ru 66	Rh 170	Pd 783	Ag -25	Cd -19	In -8,2	Sn 2,4	Sb -67	Te -24	I -22	Xe (-24)
Cs 5,3	Ba 6,7	La Hf Ta W Re Os Ir Pt Au Hg T1 Pb Bi Po At Rn 63 71 175 78 96 15 37 264 -34 -28 -36 -16 -153 At Rn									Rn						
												1					
	diamagnetic		par	amagi	netic		ferr	omagi	netic								

Magnetic moments originate from unpaired electrons which causes orbital and spin moment.

Introduction Magnetism

			r								\mathbf{Cr}	+ + + + +	+
1	2	3	4	5	6	7	8	9	10	11	Mo		▲
H (-2,5)	all values given for a temperature of 300 K									IVIII			
Li	Be	I									Fe	│┿┿╢┿╽┿╽┿╽┿ ╽	↑ ↓
24 Na	-23 Mg										Co	 +↓ +↓ + + +	♦ ↓
8.1	5.7	0	T.		0		T	0	37	0	00		
к 5.7	21	Sc 264	11 181	V 383	267	Mn 828	Fe 2.16	1,76	N1 0,61	-9,7	Ni	│ ╇╈ │ ╇╈ │ ╇╈│	↑ ↓
Rb 44	Sr 36	Y 122	Zr 109	Nb 236	Mo 119	Tc 373	Ru 66	Rh 170	Pd 783	Ag -25	Cu	★↓ ↓ ↓ ↓ ↓ ↓	
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Cu		
5.3	$5.3 \ 6.7 \ 63 \ 71 \ 175 \ 78 \ 96 \ 15 \ 37 \ 264 \ -34 \ Zn \qquad $								≜ ∔				
	dia	magn	etic		para	amagı	netic		ferr	omag	netic		

 \mathbf{Sc}

Ti

 \mathbf{V}

3đ

4s

≜∔

≜∔

Magnetic moments originate from unpaired electrons which causes orbital and spin moment.

Introduction Magnetism

											Cr	+ + + + +	•
1	2	3	4	5	6	7	8	9	10	11	Mn	+ + + + + +	≜ ↓
H (-2,5)	All values given for a temperature of 300									00 K			
Li	Be										Fe	the test	
Na	Mg										Co	++++ + 285ner +	I † ↓
8.1 K	5.7 Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu		aroni	
5.7	21	264	181	383	267	828	2.16	1,76	0.61	-9,7	Ni		
Кb 4,4	Sr 36	Y 122	Zr 109	Nb 236	Мо 119	1c 373	Ru 66	Rh 170	Pd 783	Ag -25	Cu	 ++ ++ ++ + + +	•
Cs 5.3	Ba 6.7	La 63	Hf 71	Ta 175	W 78	Re 96	Os 15	Ir 37	Pt 264	Au -34	-		
									Ţŧ				
	dia	imagn	etic		para	amagi	netic		ferr	omag	netic		

 \mathbf{Sc}

Ti

v

3đ

4s

≜∔

≜∔

Paramagnet

Thermal fluctuation stronger than the exchange energy

Thermal fluctuation weaker than the exchange energy

Growing magnetic correlation length From short range to long range

Landau theory for phase transition

Order Parameter

Landau theory for phase transition

Order Parameter

Ferromagnetic

Internal field

Regular spinel structure

Divalent metal ions in the tetrahedral (A)-site and trivalent metal ions in the octahedral [B]-site

Inverse spinel structure

Half of the [B]-sites (8 sites) are occupied by divalent metal ions and the remaining half of the [B]-sites (8 sites) and all the (A)-sites are occupied by the trivalent metal ions

Partial inverse spinel structure

1- Complex exchange interactions of the different cations between and within the A & B sites.

2- Effect of the reduced particle size.

3- Effect of defects and lattice deformation.

Applications of Ferrites

Ferrites have very wide rang of applications:

- In radio receivers to increase the sensitivity and selectivity of the receiver.
- As cores in audio and TV transformer
- In digital computers and data processing circuits.
- To produce low frequency ultra sonic waves by magnetostriction principle.
- In high-power microwave Components and Industrial Microwave Systems...
- In the design of ferromagnetic amplifiers of microwave signals.
- In instruments like galvanometers, ammeter, voltmeter, flex meters, speedometers, wattmeter, compasses and recorders
- ✤ In high power circulators, isolators, couplers, phase shifters, filters, and loads for industrial, radar, medical and high energy physics applications.

lon	A-site (Å)	B-site (Å)		lon	A-site (Å)	B-site (Å)
r(Sm ³⁺)	-	0.958	NG	r(Fe ³⁺)	0.49	0.645
r(Gd ³⁺)	-	0.938	VS	r(Ni ²⁺)	0.55	0.69
r(Ce ³⁺)	-	1.14		r(Co ²⁺)	0.38	0.745

CoFe_{2-r}Ce_rO₄

In this presentation

$CoFe_{2-x}Ce_xO_4$

x=0, 0.01, 0.03, 0.05, 0.07 and 0.1

Sol-gel

Transmission Electron Microscope

X-ray Diffraction

Vibrating Sample Magnetometer

Neutron Diffraction

Mössbauer Effect Spectroscopy

$CoFe_{2-x}Ce_xO_4$

TEM

 $CoFe_{2-x}Ce_xO_4$

XRD

 $CoFe_{2-x}Ce_xO_4$

XRD

VSM

 $CoFe_{2-x}Ce_xO_4$

x	Saturation magnetization M_{s} (emu/g)	Coercivity H _c (G)	Remanent magnetization <i>M</i> _r (emu/g)	$\begin{array}{c} \mathbf{Magnetic} \\ \mathbf{moment} \\ \boldsymbol{n_{\mathrm{B}}} \ (\boldsymbol{\mu_{\mathrm{B}}}) \end{array}$
0.0	32.9	972	17.3	1.38
0.01	38.2	1573	19.0	1.61
0.03	27.5	1603	13.6	1.17
0.05	21.5	1342	9.0	0.92
0.07	21.9	1364	8.6	0.94
0.1	19.0	411	6.7	0.83

Decreasing D _____ Ms & Hc

VSM

ME

ME

Typical long range ferrimagnetic order

Nano Scale: Small grain sizes (D) with short range magnetic order

ME

Typical long range ferrimagnetic order

Finite size effects lead to a reduction in magnetism and the appearance of superparamagnetic phase in ultrasmall particles $CoFe_{2-x}Ce_{x}O_{4}$

 $CoFe_{2-x}Ce_xO_4$

x	D (nm)	a _{xrd} (Å)	a_{th} (Å)	A-O cal. (Å)	B-O cal. (Å)	u ^{3m} (Å)	u ^{43m} (Å)
0 0.01 0.03 0.05 0.07	57(1.4) 46(1) 39(0.7) 22(0.3) 21(0.3)	8.358(4) 8.369(4) 8.364(5) 8.385(6) 8.377(7)	8.367 8.346 8.348 8.33 8.321	1.859 1.849 1.846 1.836 1.829	2.064 2.062 2.064 2.064 2.064	0.272 0.273 0.273 0.274 0.274	0.397 0.398 0.398 0.399 0.399
0.1	21(0.4)	8.374(8)	8.328	1.826	2.068	0.274	0.399

	Parameter	x = 0.0	x = 0.01	x = 0.07
Neutron Diff.	$a_{cub}, Å$ x (O) $n_{(A)}$ (Fe) $\mu_{(A)}/\mu_{(B)}, \mu_{B}$ A-O, Å B-O, Å	8.375 0.249(1) 0.99(8) 5.9/3.94(12) 1.807(5) 2.097(5)	8.380 0.256(1) 0.95(9) 5.9/2.68(13) 1.900(3) 2.047(3)	8.378 0.252(1) 0.97(9) 5.9/2.95(17) 1.84(1) 2.08(1)
	L, Ă	767	530	274

 $CoFe_{2-x}Ce_xO_4$

x	D (nm)	a _{xrd} (Å)	$a_{\rm th}$ (Å)	A-O cal. (Å)	B-O cal. (Å)	u ^{3m} (Å)	u ^{43m} (Å)
0	57(1.4)	8.358(4)	8.367	1.859	2.064	0.272	0.397
0.01	46(1)	8.369(4)	8.346	1.849	2.062	0.273	0.398
0.03	39(0.7)	8.364(5)	8.348	1.846	2.064	0.273	0.398
0.05	22(0.3)	8.385(6)	8.33	1.836	2.064	0.274	0.399
0.07	21(0.3)	8.377(7)	8.321	1.829	2.064	0.274	0.399
0.1	21(0.4)	8.374(8)	8.328	1.826	2.068	0.274	0.399

\frown	Parameter	x = 0.0	x = 0.01	x = 0.07
Neutron Diff.	$a_{cub}, \text{\AA}$ x (O) $n_{(A)}$ (Fe) $\mu_{(A)}/\mu_{(B)}, \mu_{B}$ A-O, Å B-O, Å L, Å	8.375 0.249(1) 0.99(8) 5.9/3.94(12) 1.807(5) 2.097(5) 767	8.380 0.256(1) 0.95(9) 5.9/2.68(13) 1.900(3) 2.047(3) 530	8.378 0.252(1) 0.97(9) 5.9/2.95(17) 1.84(1) 2.08(1) 274

 $CoFe_{2-x}Ce_xO_4$

	x	D (nm)	a _{xrd} (Å)	a _{th} (Å)	A-O cal. (Å)	B-O cal. (Å)	u ^{3m} (Å)	u ^{43m} (Å)
	0	57(1.4)	8.358(4)	8.367	1.859	2.064	0.272	0.397
	0.01	46(1)	8.369(4)	8.346	1.849	2.062	0.273	0.398
	0.03	39(0.7)	8.364(5)	8.348	1.846	2.064	0.273	0.398
	0.05	22(0.3)	8.385(6)	8.33	1.836	2.064	0.274	0.399
	0.07	21(0.3)	8.377(7)	8.321	1.829	2.064	0.274	0.399
J	0.1	21(0.4)	8.374(8)	8.328	1.826	2.068	0.274	0.399

	Parameter	x = 0.0	x = 0.01	x = 0.07
Ë	a _{cub} , Å	8.375	8.380	8.378
	x (O)	0.249(1)	0.256(1)	0.252(1)
5	n _(A) (Fe)	0.99(8)	0.95(9)	0.97(9)
Ţ	$\mu_{(A)}/\mu_{(B)}, \mu_B$	5.9/3.94(12)	5.9/2.68(13)	5.9/2.95(17)
De l	A-O, Å	1.807(5)	1.900(3)	1.84(1)
ž	B-O, Å	2.097(5)	2.047(3)	2.08(1)
	L, Å	767	530	274

 $CoFe_{2-x}Ce_xO_4$

	x	D (nm)	a _{xrd} (Å)	a _{th} (Å)	A-O cal. (Å)	B-O cal. (Å)	u ^{3m} (Å)	u ^{43m} (Å)
	0	57(1.4)	8.358(4)	8.367	1.859	2.064	0.272	0.397
	0.01	46(1)	8.369(4)	8.346	1.849	2.062	0.273	0.398
	0.03	39(0.7)	8.364(5)	8.348	1.846	2.064	0.273	0.398
	0.05	22(0.3)	8.385(6)	8.33	1.836	2.064	0.274	0.399
	0.07	21(0.3)	8.377(7)	8.321	1.829	2.064	0.274	0.399
J	0.1	21(0.4)	8.374(8)	8.328	1.826	2.068	0.274	0.399

Parameter	x = 0.0	x = 0.01	x = 0.07
a _{cub} , Å	8.375	8.380	8.378
x (O)	0.249(1)	0.256(1)	0.252(1)
n _(A) (Fe)	0.99(8)	0.95(9)	0.97(9)
$\mu_{(A)}/\mu_{(B)}, \mu_{B}$	5.9/3.94(12)	5.9/2.68(13)	5.9/2.95(17)
A-O, Å	1.807(5)	1.900(3)	1.84(1)
B-O, Å	2.097(5)	2.047(3)	2.08(1)
L, Å	767	530	274
	Parameter a_{cub}, \mathring{A} x (O) $n_{(A)}$ (Fe) $\mu_{(A)}/\mu_{(B)}, \mu_{B}$ A-O, \mathring{A} B-O, \mathring{A} L, \mathring{A}	Parameter $x = 0.0$ a_{cub} , Å 8.375 x (O) $0.249(1)$ $n_{(A)}$ (Fe) $0.99(8)$ $\mu_{(A)}/\mu_{(B)}$, μ_B $5.9/3.94(12)$ A-O, Å $1.807(5)$ B-O, Å $2.097(5)$ L, Å767	Parameter $x = 0.0$ $x = 0.01$ $a_{cub}, Å$ 8.375 8.380 x (O) $0.249(1)$ $0.256(1)$ $n_{(A)}$ (Fe) $0.99(8)$ $0.95(9)$ $\mu_{(A)}/\mu_{(B)}, \mu_B$ $5.9/3.94(12)$ $5.9/2.68(13)$ A-O, Å $1.807(5)$ $1.900(3)$ B-O, Å $2.097(5)$ $2.047(3)$ L, Å767 530

 $CoFe_{2-x}Ce_xO_4$

$\begin{array}{cccc} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	
0 57(1.4) 8.358(4) 8.367 1.859 2.064 0.7 0.01 46(1) 8.369(4) 8.346 1.849 2.062 0.7 0.03 39(0.7) 8.364(5) 8.348 1.846 2.064 0.7 0.05 22(0.3) 8.385(6) 8.33 1.836 2.064 0.7 0.07 21(0.3) 8.377(7) 8.321 1.829 2.064 0.7 0.1 21(0.4) 8.374(8) 8.328 1.826 2.068 0.7	0.2720.3970.2730.3980.2730.3980.2740.3990.2740.3990.2740.3990.2740.399

Parameter	x = 0.0	x = 0.01	x = 0.07
a _{cub} , Å	8.375	8.380	8.378
x (0)	0.249(1)	0.256(1)	0.252(1)
$\begin{array}{c} n_{(A)} \text{ (Fe)} \\ \mu_{(A)}/\mu_{(B)}, \mu_{B} \end{array}$	0.99(8)	0.95(9)	0.97(9)
	5.9/3.94(12)	5.9/2.68(13)	5.9/2.95(17)
A-O, Å	1.807(5)	1.900(3)	1.84(1)
B-O, Å	2.097(5)	2.047(3)	2.08(1)
L, Å	767	530	274
	Parameter a_{cub}, \mathring{A} x (O) $n_{(A)}$ (Fe) $\mu_{(A)}/\mu_{(B)}, \mu_{B}$ A-O, \mathring{A} B-O, \mathring{A} L, \mathring{A}	Parameter $x = 0.0$ a_{cub} , Å 8.375 x (O) $0.249(1)$ $n_{(A)}$ (Fe) $0.99(8)$ $\mu_{(A)}/\mu_{(B)}$, μ_B $5.9/3.94(12)$ A-O, Å $1.807(5)$ B-O, Å $2.097(5)$ L, Å767	Parameter $x = 0.0$ $x = 0.01$ a_{cub} , Å 8.375 8.380 x (O) $0.249(1)$ $0.256(1)$ $n_{(A)}$ (Fe) $0.99(8)$ $0.95(9)$ $\mu_{(A)}/\mu_{(B)}$, μ_B $5.9/3.94(12)$ $5.9/2.68(13)$ A-O, Å $1.807(5)$ $1.900(3)$ B-O, Å $2.097(5)$ $2.047(3)$ L, Å767 530

CoFe_{2-x}Ce_xO₄

x	Cation Distribution (Mössbauer Effect)		er Effect)	Cation Distribution (Neutron Diffraction)	δ Mössbauer Effect)	δ Neutron Diffraction
0	(Fe _{0.988} Co _{0.012})			$(Fe_{0.99}Co_{0.01})$ [Fe_1 01Co_0 99]O4	0.988	0.99
0.01	(Fe _{0.903} Co _{0.097})			$(Fe_{0.95}Co_{0.05})$	0.903	0.95
0.03	(Fe _{0.876} Co _{0.124})	4		L C1.04000.95000.01104	0.876	
0.05	(Fe _{0.783} Co _{0.217})	4			0.783	
0.07	(Fe _{0.72} Co _{0.28})	4		(Fe _{0.97} Co _{0.03})	0.72	0.97
0.1	(Fe _{0.694} Co _{0.306}) [Fe _{1.206} Co _{0.694} Ce _{0.1}]O ₄			Fr -0.30 -000,97 - 00,07 - 04	0.694	
			1.1	· · · · · · · · ·		
			1.0 - 0	•		
		site	0.9 -	0		
	Fe in A -	0.8 -	ο	-		
		0.7 -	0	o -		
		0.6 -	Neutron			
		- 0	Mossbauer Effect			
		0.0	0.02 0.04 0.06 0.08	0.10		
				x (Ce content)		

Conclusion

- Ce³⁺ doping decreases the particle size of the prepared samples.
- TEM measurements confirm the formation of nano sized spherical shaped particles.
- XRD illustrates a single spinel phase for all the prepared samples and a gradual decrease of D with increasing Ce content was observed.
- VSM measurements spot a gradual decrease in the saturation magnetization with decreasing D.
- Mössbauer effect spectroscopy suggests the coexistence of the magnetic order for large particle sizes and superparamagnetic behavior for ultrasmall particles.
- Neutron diffraction measurements capture the reduced particle size and the magnetic order.

Thanks for your attention!